531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469 | class EvolverAgent(MemoryMixin):
"""Evolver agent encapsulating evolutionary optimization functionality.
This class wraps the pydantic-ai Agent and provides all evolution tools
as instance methods for cleaner organization and testing.
@notice: |
Optimizes prototype solutions via evolutionary search.
Use the module-level evolver_agent or agent registry.
@dev: |
Registers evolution tools and coordinates mutation/evaluation cycles.
@pattern:
name: agent-singleton
rationale: "Single instance keeps memory/tool registration consistent."
violations: "Multiple instances duplicate tool registrations."
@collaborators:
required:
- agent_k.core.protocols:PlatformAdapter
- agent_k.ui.agui:EventEmitter
optional:
- agent_k.adapters.openevolve:OpenEvolveRunner
injection: deps via RunContext
lifecycle: "Module-level singleton at import time."
@concurrency:
model: asyncio
safe: false
reason: "Mutates evolution state and caches."
@invariants:
- "self._agent is initialized after __init__ completes."
- "self._toolset registers evolution tools exactly once."
"""
def __init__(
self,
settings: Annotated[EvolverSettings | None, Doc("Optional settings override.")] = None,
*,
register: Annotated[bool, Doc("Register agent in global registry.")] = True,
) -> None:
"""Initialize the Evolver agent.
@notice: |
Builds the agent singleton and registers tools.
@dev: |
Initializes memory backend, toolset, and pydantic-ai Agent.
@state-changes:
- self._settings
- self._toolset
- self._agent
"""
self._settings = settings or EvolverSettings()
self._toolset: FunctionToolset[EvolverDeps] = FunctionToolset(id="evolver")
self._memory_backend = self._init_memory_backend()
self._register_tools()
self._agent = self._create_agent()
if register:
register_agent("evolver", self._agent)
self._setup_memory()
@property
def agent(self) -> Agent[EvolverDeps, EvolutionResult | EvolutionFailure]:
"""Return the underlying pydantic-ai Agent."""
return self._agent
@property
def settings(self) -> EvolverSettings:
"""Return current settings."""
return self._settings
async def run_openevolve(
self,
deps: Annotated[EvolverDeps, Doc("Evolution dependencies and state.")],
*,
base_prompt: Annotated[str | None, Doc("Optional base prompt override.")] = None,
model_specs: Annotated[list[str] | None, Doc("Optional model specs for OpenEvolve.")] = None,
) -> EvolutionResult | EvolutionFailure:
"""Run OpenEvolve-backed evolution for a prototype solution.
@notice: |
Delegates mutation and evaluation to OpenEvolve when enabled.
@effects:
io:
- OpenEvolve API requests
state:
- deps.best_solution
- deps.best_fitness
"""
with logfire.span("evolver.openevolve"):
initial_program = deps.initial_solution or deps.best_solution or ""
baseline_score = self._score_from_fitness(deps.best_fitness, deps.competition.metric_direction)
specs = [spec.strip() for spec in (model_specs or []) if isinstance(spec, str) and spec.strip()]
if not specs:
specs = [self._settings.model]
runner = OpenEvolveRunner(
work_dir=deps.data_dir,
hints=deps.preprocessing_hints,
model_specs=specs,
metric_direction=deps.competition.metric_direction,
validation_split=0.2,
timeout_seconds=deps.solution_timeout,
base_prompt=base_prompt,
)
target_fitness = None
if deps.target_score:
target_fitness = self._fitness_from_score(deps.target_score, deps.competition.metric_direction)
try:
result = await runner.run_evolution(
initial_program=initial_program, max_iterations=deps.max_generations, target_score=target_fitness
)
except Exception as exc:
logfire.error("openevolve_failed", error=str(exc))
return EvolutionFailure(
error_type=type(exc).__name__,
error_message=str(exc),
partial_solution=initial_program or deps.best_solution,
recoverable=True,
)
best_solution = result.get("best_solution") or initial_program
best_fitness = float(result.get("best_fitness") or 0.0)
programs = result.get("programs") or []
deps.best_solution = best_solution
deps.best_fitness = best_fitness
deps.generation_history, deps.improvement_count = self._summarize_openevolve_history(
programs, deps.population_size, deps.competition.metric_direction
)
self._record_openevolve_hint_attempts(deps, programs, baseline_score)
best_score = self._score_from_fitness(best_fitness, deps.competition.metric_direction)
convergence_achieved = False
convergence_reason = None
if best_score is not None:
if deps.competition.metric_direction == "minimize" and best_score <= deps.target_score:
convergence_achieved = True
convergence_reason = "target_score"
elif deps.competition.metric_direction == "maximize" and best_score >= deps.target_score:
convergence_achieved = True
convergence_reason = "target_score"
return EvolutionResult(
best_solution=best_solution,
best_fitness=best_fitness,
generations_completed=len(deps.generation_history),
convergence_achieved=convergence_achieved,
convergence_reason=convergence_reason,
submission_ready=False,
)
async def mutate_solution(
self,
ctx: RunContext[EvolverDeps],
solution_code: Annotated[str, Doc("Solution code to mutate.")],
mutation_type: Annotated[
str, Doc("Mutation type (point, structural, hyperparameter, crossover, hint_injection).")
],
mutation_params: Annotated[dict[str, Any] | None, Doc("Optional parameters for the mutation.")] = None,
) -> str:
"""Apply mutation to a solution.
@notice: |
Applies a mutation strategy and returns the mutated code.
@effects:
state:
- none
"""
with logfire.span("evolver.mutate", mutation_type=mutation_type):
await ctx.deps.event_emitter.emit(
"tool-start",
{
"taskId": "evolution_mutate",
"toolCallId": f"mutate_{mutation_type}",
"toolType": "code_executor",
"operation": f"mutate_{mutation_type}",
},
)
params = dict(mutation_params or {})
if mutation_type == "hyperparameter" and "magnitude" not in params:
params["magnitude"] = self._adaptive_magnitude(ctx.deps)
mutations = {
"crossover": lambda: self._apply_crossover(solution_code, params.get("other_solution", ""), params),
"hyperparameter": lambda: self._apply_hyperparameter_mutation(solution_code, params),
"hint_injection": lambda: self._apply_hint_injection(ctx, solution_code, params),
"point": lambda: self._apply_point_mutation(solution_code, params),
"structural": lambda: self._apply_structural_mutation(solution_code, params),
}
mutated = mutations.get(mutation_type, lambda: solution_code)()
mutated = self._apply_solution_policy(ctx, mutated)
mutated = self._ensure_hint_applied(ctx, mutated, params)
if not self._is_valid_python(mutated):
logfire.warning("evolver_mutation_invalid", mutation_type=mutation_type)
fallback = self._apply_solution_policy(ctx, solution_code)
return self._ensure_hint_applied(ctx, fallback, params)
if self._has_invalid_knn_params(mutated):
logfire.warning("evolver_mutation_invalid_params", mutation_type=mutation_type)
fallback = self._apply_solution_policy(ctx, solution_code)
return self._ensure_hint_applied(ctx, fallback, params)
return mutated
async def evaluate_fitness(
self,
ctx: RunContext[EvolverDeps],
solution_code: Annotated[str, Doc("Solution code to evaluate.")],
validation_split: Annotated[float, Doc("Fraction of data for validation."), Range(0.0, 0.9)] = 0.2,
) -> ToolReturn:
"""Evaluate solution fitness.
@notice: |
Runs evaluation and emits fitness telemetry.
@effects:
io:
- local execution
state:
- ctx.deps.best_fitness
- ctx.deps.best_solution
"""
with logfire.span("evolver.evaluate_fitness"):
tool_call_id = f"fitness_{id(solution_code):x}"
await ctx.deps.event_emitter.emit_tool_start(
task_id="evolution_evaluate",
tool_call_id=tool_call_id,
tool_type="code_executor",
operation="evaluate_fitness",
)
solution_code = self._apply_solution_policy(ctx, solution_code)
original_has_hints = _HINT_COMMENT_PREFIX in solution_code
solution_code = self._ensure_hint_applied(ctx, solution_code, {})
if ctx.deps.preprocessing_hints and _HINT_COMMENT_PREFIX not in solution_code:
hint = self._select_hint_for_injection(ctx, {}, applied=set())
if hint is not None:
solution_code = self._append_hint_comment(solution_code, hint)
modified_has_hints = _HINT_COMMENT_PREFIX in solution_code
logfire.info(
"evaluating_with_hints",
original_has_hints=original_has_hints,
modified_has_hints=modified_has_hints,
hints_available=len(ctx.deps.preprocessing_hints),
)
previous_best_fitness = ctx.deps.best_fitness
result = await self._run_evaluation(ctx, solution_code, validation_split=validation_split)
eligible_for_archive = result["valid"] and result.get("stage") != "stage1"
improvement = False
improvement_delta: float | None = None
self._update_hint_tracking(ctx, solution_code, result, previous_best_fitness)
if eligible_for_archive:
if ctx.deps.best_fitness is None or result["fitness"] > ctx.deps.best_fitness:
previous_best = ctx.deps.best_fitness
ctx.deps.best_fitness = result["fitness"]
ctx.deps.best_solution = solution_code
if previous_best is not None:
ctx.deps.improvement_count += 1
improvement = True
improvement_delta = result["fitness"] - previous_best
if result["valid"]:
archive_entry = self._build_archive_entry(solution_code, result["fitness"], result["cv_score"])
if eligible_for_archive:
self._update_elite_archive(ctx.deps, archive_entry)
result.update(
{
"complexity": archive_entry.complexity,
"complexity_bin": archive_entry.complexity_bin,
"model_family": archive_entry.model_family,
"archive_size": len(ctx.deps.elite_archive),
"improvement_count": ctx.deps.improvement_count,
"improved": improvement,
"improvement_delta": improvement_delta,
}
)
await ctx.deps.event_emitter.emit(
"fitness-update",
{
"fitness": result["fitness"],
"cv_score": result["cv_score"],
"validation_split": validation_split,
"stage": result.get("stage", "full"),
"improvement_count": ctx.deps.improvement_count,
"improved": improvement,
},
)
else:
await ctx.deps.event_emitter.emit_tool_error(
task_id="evolution_evaluate",
tool_call_id=tool_call_id,
error=result.get("error") or "Invalid solution",
)
await ctx.deps.event_emitter.emit_tool_result(
task_id="evolution_evaluate", tool_call_id=tool_call_id, result=result, duration_ms=result["runtime_ms"]
)
summary = f"Fitness {result['fitness']:.4f}, CV {result['cv_score']:.4f}, valid={result['valid']}"
if not result["valid"] and result.get("error_category"):
summary = f"{summary}, error={result['error_category']}"
return ToolReturn(
return_value=result,
content=summary,
metadata={"tool_call_id": tool_call_id, "runtime_ms": result["runtime_ms"]},
)
async def record_generation(
self,
ctx: RunContext[EvolverDeps],
generation: Annotated[int, Doc("Generation index (0-based)."), Range(0, 10_000)],
best_fitness: Annotated[float, Doc("Best fitness in generation.")],
mean_fitness: Annotated[float, Doc("Mean fitness in generation.")],
worst_fitness: Annotated[float, Doc("Worst fitness in generation.")],
mutations: Annotated[dict[str, int], Doc("Mutation counts for the generation.")],
) -> None:
"""Record generation metrics.
@notice: |
Appends generation metrics and emits telemetry.
@effects:
state:
- ctx.deps.generation_history
"""
global_generation = generation + ctx.deps.generation_offset
metrics = {
"generation": global_generation,
"best_fitness": best_fitness,
"mean_fitness": mean_fitness,
"worst_fitness": worst_fitness,
"mutations": mutations,
}
ctx.deps.generation_history.append(metrics)
await ctx.deps.event_emitter.emit_generation_complete(
generation=global_generation,
best_fitness=best_fitness,
mean_fitness=mean_fitness,
worst_fitness=worst_fitness,
population_size=ctx.deps.population_size,
mutations=mutations,
)
logfire.info(
"evolution_generation", generation=global_generation, best_fitness=best_fitness, mean_fitness=mean_fitness
)
async def check_convergence(
self,
ctx: RunContext[EvolverDeps],
threshold_generations: Annotated[int, Doc("Generations to check for improvement."), Range(1, 1000)] = 5,
improvement_threshold: Annotated[float, Doc("Minimum improvement required."), Range(0.0, 10.0)] = 0.001,
) -> ToolReturn:
"""Check if evolution has converged.
@notice: |
Determines whether fitness has plateaued or target score reached.
@effects:
state:
- none
"""
history = ctx.deps.generation_history
policy = self._resolve_technique_policy(ctx.deps)
if policy is not None:
if len(ctx.deps.elite_archive) < policy.min_elite_archive_size:
result = {
"converged": False,
"reason": (
f"Elite archive too small ({len(ctx.deps.elite_archive)}/{policy.min_elite_archive_size})"
),
}
return ToolReturn(return_value=result, content=json.dumps(result))
improvement_threshold = max(improvement_threshold, policy.fitness_improvement_threshold)
if ctx.deps.min_generations and len(history) < ctx.deps.min_generations:
result = {
"converged": False,
"reason": f"Minimum generations not reached ({len(history)}/{ctx.deps.min_generations})",
}
return ToolReturn(return_value=result, content=json.dumps(result))
if len(history) < threshold_generations:
result = {"converged": False, "reason": "Not enough generations"}
return ToolReturn(return_value=result, content=json.dumps(result))
if ctx.deps.min_improvements_required and ctx.deps.improvement_count < ctx.deps.min_improvements_required:
result = {
"converged": False,
"reason": (
"Minimum improvements not reached "
f"({ctx.deps.improvement_count}/{ctx.deps.min_improvements_required})"
),
"improvement_count": ctx.deps.improvement_count,
}
return ToolReturn(return_value=result, content=json.dumps(result))
recent_fitness = [g["best_fitness"] for g in history[-threshold_generations:]]
best = max(recent_fitness)
improvement = best - min(recent_fitness)
if improvement < improvement_threshold:
result = {
"converged": True,
"reason": f"No improvement for {threshold_generations} generations",
"best_fitness": best,
}
return ToolReturn(return_value=result, content=json.dumps(result))
if ctx.deps.target_score > 0:
target_fitness = self._fitness_from_score(ctx.deps.target_score, ctx.deps.competition.metric_direction)
if best >= target_fitness:
result = {"converged": True, "reason": "Target score achieved", "best_fitness": best}
return ToolReturn(return_value=result, content=json.dumps(result))
result = {"converged": False, "reason": "Evolution in progress", "recent_improvement": improvement}
return ToolReturn(return_value=result, content=json.dumps(result))
async def sample_elites(
self,
ctx: RunContext[EvolverDeps],
num_top: Annotated[int | None, Doc("Number of top elites to sample.")] = None,
num_diverse: Annotated[int | None, Doc("Number of diverse elites to sample.")] = None,
) -> ToolReturn:
"""Sample elite solutions for prompt construction.
@notice: |
Selects top and diverse elites from the archive.
@effects:
state:
- none
"""
top = self._settings.elite_sample_top if num_top is None else max(0, num_top)
diverse = self._settings.elite_sample_diverse if num_diverse is None else max(0, num_diverse)
entries = self._select_elite_samples(ctx.deps, top=top, diverse=diverse)
payload = [entry.to_payload(max_chars=self._settings.elite_code_max_chars) for entry in entries]
summary = f"Sampled {len(payload)} elites from {len(ctx.deps.elite_archive)} archive cells."
return ToolReturn(return_value=payload, content=summary)
async def submit_to_kaggle(
self,
ctx: RunContext[EvolverDeps],
solution_code: Annotated[str, Doc("Solution code to submit.")],
message: Annotated[str, Doc("Submission message.")] = "AGENT-K submission",
) -> ToolReturn:
"""Submit solution to Kaggle via the platform adapter.
@notice: |
Writes a submission file and triggers adapter submission.
@effects:
io:
- local filesystem access
- Kaggle API request
"""
with logfire.span("evolver.submit", competition_id=ctx.deps.competition.id):
tool_call_id = f"submit_{len(ctx.deps.generation_history)}"
await ctx.deps.event_emitter.emit(
"tool-start",
{
"taskId": "evolution_submit",
"toolCallId": tool_call_id,
"toolType": "kaggle_mcp",
"operation": "competitions.submit",
},
)
result = await self._submit_solution(ctx, solution_code, message=message)
if result.get("status") == "failed":
await ctx.deps.event_emitter.emit_tool_error(
task_id="evolution_submit",
tool_call_id=tool_call_id,
error=result.get("error", "Submission failed"),
)
summary = f"Submission failed: {result.get('error', 'Unknown error')}"
return ToolReturn(return_value=result, content=summary)
await ctx.deps.event_emitter.emit_tool_result(
task_id="evolution_submit",
tool_call_id=tool_call_id,
result=result,
duration_ms=result.get("runtime_ms", 0),
)
summary = f"Submission status: {result.get('status', 'unknown')}"
return ToolReturn(return_value=result, content=summary)
def _create_agent(self) -> Agent[EvolverDeps, EvolutionResult | EvolutionFailure]:
"""Create the underlying pydantic-ai agent.
@factory-for:
id: agent_k.agents.evolver:EvolverAgent
rationale: "Centralizes agent wiring and toolset preparation."
singleton: true
cache-key: "module"
@canonical-home:
for:
- "evolver agent construction"
notes: "Use EvolverAgent() or module singleton."
"""
builtin_tools: list[Any] = [prepare_code_execution_tool]
if self._settings.enable_kaggle_mcp:
builtin_tools.insert(0, MCPServerTool(id="kaggle", url=self._settings.kaggle_mcp_url))
if self._memory_backend is not None:
builtin_tools.append(prepare_memory_tool)
require_approval = ["submit_to_kaggle"] if self._settings.enable_submission_tool else None
agent: Agent[EvolverDeps, EvolutionResult | EvolutionFailure] = Agent(
model=get_model(self._settings.model),
deps_type=EvolverDeps,
output_type=EVOLUTION_OUTPUT_TYPE,
instructions=EVOLVER_SYSTEM_PROMPT,
name="evolver",
model_settings=self._settings.model_settings,
retries=self._settings.tool_retries,
output_retries=self._settings.output_retries,
builtin_tools=builtin_tools,
toolsets=[
create_production_toolset(
[self._toolset, cast("FunctionToolset[EvolverDeps]", code_toolset)],
require_approval_for=require_approval,
)
],
prepare_tools=universal_tool_preparation,
instrument=True,
)
agent.output_validator(self._validate_evolution_result)
agent.instructions(self._add_evolution_context)
return agent
def _register_tools(self) -> None:
"""Register all evolution tools with the toolset."""
self._toolset.tool(self.mutate_solution)
self._toolset.tool(self.evaluate_fitness)
self._toolset.tool(self.record_generation)
self._toolset.tool(self.check_convergence)
self._toolset.tool(self.sample_elites)
if self._settings.enable_submission_tool:
self._toolset.tool(requires_approval=True)(self.submit_to_kaggle)
async def _validate_evolution_result(
self, ctx: RunContext[EvolverDeps], result: EvolutionResult | EvolutionFailure
) -> EvolutionResult | EvolutionFailure:
"""Validate evolution results."""
if ctx.partial_output:
return result
match result:
case EvolutionFailure(error_type=error_type, error_message=error_message) if (
not error_type or not error_message
):
raise ModelRetry("EvolutionFailure must include error_type and error_message.")
case EvolutionResult(best_fitness=best_fitness) if best_fitness < 0:
raise ModelRetry("best_fitness must be >= 0. Provide a valid fitness score.")
case EvolutionResult(best_solution=best_solution) if not best_solution:
raise ModelRetry("best_solution is required. Provide the best solution code.")
return result
async def _add_evolution_context(self, ctx: RunContext[EvolverDeps]) -> str:
"""Add evolution-specific context to instructions."""
comp = ctx.deps.competition
deps = ctx.deps
sections = [
(
"COMPETITION CONTEXT:\n"
f"- ID: {comp.id}\n"
f"- Title: {comp.title}\n"
f"- Metric: {comp.metric.value} ({comp.metric_direction})\n"
f"- Target Score: {deps.target_score}"
),
(
"EVOLUTION STATE:\n"
f"- Generations Completed: {len(deps.generation_history)}\n"
f"- Population Size: {deps.population_size}\n"
f"- Max Generations: {deps.max_generations}\n"
f"- Minimum Generations: {deps.min_generations}\n"
f"- Improvements: {deps.improvement_count}\n"
f"- Min Improvements Required: {deps.min_improvements_required}\n"
f"- Generation Offset: {deps.generation_offset}"
),
]
if deps.generation_history:
last_gen = deps.generation_history[-1]
sections.append(
"LAST GENERATION:\n"
f"- Best Fitness: {last_gen.get('best_fitness', 'N/A')}\n"
f"- Mean Fitness: {last_gen.get('mean_fitness', 'N/A')}"
)
if deps.best_solution:
sections.append(f"BEST SOLUTION AVAILABLE: {len(deps.best_solution)} chars")
if deps.elite_archive:
families = sorted({entry.model_family for entry in deps.elite_archive.values()})
family_preview = ", ".join(families[:6])
suffix = "..." if len(families) > 6 else ""
sections.append(
"ELITE ARCHIVE:\n"
f"- Cells: {len(deps.elite_archive)}\n"
f"- Families: {family_preview}{suffix}\n"
"- Use sample_elites to retrieve top + diverse candidates."
)
policy = self._resolve_technique_policy(deps)
if policy is not None:
sections.append(
"TECHNIQUE POLICY:\n"
f"- Min Generations: {policy.min_generations}\n"
f"- Min Population: {policy.min_population_size}\n"
f"- Elite Archive Min: {policy.min_elite_archive_size}\n"
f"- Outlier Clipping: {policy.enable_outlier_clipping}\n"
f"- Target Transform: {policy.enable_target_transform}"
)
if deps.failure_counts:
summary = _summarize_failure_counts(deps.failure_counts, limit=_FAILURE_SUMMARY_LIMIT)
if summary:
sections.append(
"EXECUTION FAILURES:\n"
f"- Top causes: {summary}\n"
"- Fix execution errors before applying further mutations."
)
if deps.last_error_feedback:
sections.append(f"LAST EXECUTION ERROR:\n{deps.last_error_feedback}")
if deps.preprocessing_hints:
prioritized = self._get_prioritized_hints(deps)
if prioritized:
hint_text = self._build_hint_context(prioritized)
if hint_text:
sections.append(hint_text)
return "\n\n".join(sections)
def _get_prioritized_hints(self, deps: EvolverDeps) -> list[dict[str, Any]]:
tracker = deps.hint_tracker
if not deps.preprocessing_hints:
return []
generation = len(deps.generation_history) + deps.generation_offset
suppressed = set(deps.suppressed_hints)
prioritized: list[dict[str, Any]] = []
for hint in deps.preprocessing_hints:
priority = hint.priority
success_rate = hint.success_rate
last_result = None
is_suppressed = hint.id in suppressed
if tracker is not None:
success_rate = tracker.get_success_rate(hint.id, deps.competition.id)
last_attempt = tracker.get_last_attempt(hint.id, deps.competition.id)
if last_attempt is not None:
last_result = self._hint_result_from_delta(last_attempt.delta)
priority = compute_hint_priority(hint, tracker, deps.competition.id, generation)
is_suppressed = is_suppressed or tracker.is_suppressed(hint.id, deps.competition.id)
prioritized.append(
{
"hint": hint,
"priority": 0.0 if is_suppressed else priority,
"success_rate": success_rate,
"last_result": last_result,
"suppressed": is_suppressed,
}
)
prioritized.sort(key=lambda item: (item["suppressed"], -item["priority"], item["hint"].id))
return prioritized
def _build_hint_context(self, prioritized: list[dict[str, Any]]) -> str:
active = [item for item in prioritized if not item["suppressed"]]
if not active:
return ""
active.sort(key=lambda item: item["priority"], reverse=True)
lines = ["## PREPROCESSING GUIDANCE (Apply at least ONE per mutation)", ""]
for index, item in enumerate(active[:5], start=1):
hint = item["hint"]
title = self._hint_title(hint)
priority = item["priority"]
lines.extend(
[
f"### Hint {index}: {title} (priority={priority:.2f})",
f"ID: `{hint.id}` - Add comment `# Applied hint: {hint.id}`",
f"Description: {hint.description}",
"```python",
hint.code_snippet.strip(),
"```",
"",
]
)
return "\n".join(lines).strip()
def _hint_title(self, hint: PreprocessingHint) -> str:
return hint.id.replace("_", " ").title()
def _hint_priority_label(self, priority: float) -> str:
if priority >= 0.75:
return "HIGH"
if priority >= 0.5:
return "MEDIUM"
if priority > 0.0:
return "LOW"
return "SUPPRESSED"
def _inline_hint_snippet(self, snippet: str) -> str:
cleaned = " ".join(snippet.strip().split())
if not cleaned:
return ""
if len(cleaned) > _HINT_SNIPPET_MAX_CHARS:
cleaned = cleaned[:_HINT_SNIPPET_MAX_CHARS].rstrip() + "..."
return cleaned
def _hint_result_from_delta(self, delta: float) -> str:
if delta > 0:
return "success"
if delta < 0:
return "failure"
return "neutral"
def _apply_hint_injection(self, ctx: RunContext[EvolverDeps], code: str, params: dict[str, Any]) -> str:
hint = self._select_hint_for_injection(ctx, params, applied=set())
if hint is None:
return code
return self._inject_hint_snippet(code, hint)
def _ensure_hint_applied(self, ctx: RunContext[EvolverDeps], code: str, params: dict[str, Any]) -> str:
logfire.info(
"hint_injection_attempt",
code_length=len(code),
hints_available=len(ctx.deps.preprocessing_hints),
existing_markers=code.count(_HINT_COMMENT_PREFIX),
)
if not ctx.deps.preprocessing_hints:
return code
applied = detect_applied_hints(code, ctx.deps.preprocessing_hints)
generation = len(ctx.deps.generation_history) + ctx.deps.generation_offset
force_new = bool(ctx.deps.preprocessing_hints) and generation % 3 == 0
if applied and not force_new:
return code
hint = self._select_hint_for_injection(ctx, params, applied=applied)
if hint is None:
return code
injected = self._inject_hint_snippet(code, hint)
if injected != code:
return injected
return self._append_hint_comment(code, hint)
def _select_hint_for_injection(
self, ctx: RunContext[EvolverDeps], params: dict[str, Any], *, applied: set[str]
) -> PreprocessingHint | None:
hints = ctx.deps.preprocessing_hints
if not hints:
return None
requested_id = str(params.get("hint_id", "")).strip()
if requested_id:
for hint in hints:
if hint.id == requested_id:
return hint
prioritized = self._get_prioritized_hints(ctx.deps)
candidates: list[PreprocessingHint] = [item["hint"] for item in prioritized if not item["suppressed"]]
if applied:
fresh = [hint for hint in candidates if hint.id not in applied]
if fresh:
candidates = fresh
tracker = ctx.deps.hint_tracker
if tracker is not None:
unused = [hint for hint in candidates if tracker.get_last_attempt(hint.id, ctx.deps.competition.id) is None]
if unused:
candidates = unused
if not candidates:
return None
generation = len(ctx.deps.generation_history) + ctx.deps.generation_offset
return candidates[generation % len(candidates)]
def _inject_hint_snippet(self, code: str, hint: PreprocessingHint) -> str:
marker = f"{_HINT_COMMENT_PREFIX}{hint.id}"
if marker in code:
return code
block = self._build_hint_block(code, hint)
imports, body = self._split_imports(code)
insert_at = self._find_hint_insertion_index(body)
if insert_at is None:
new_body = [block, "", *body]
else:
new_body = [*body[:insert_at], block, "", *body[insert_at:]]
parts = [*imports]
if imports:
parts.append("")
parts.extend(new_body)
return "\n".join(parts).strip() + "\n"
def _build_hint_block(self, code: str, hint: PreprocessingHint) -> str:
marker = f"{_HINT_COMMENT_PREFIX}{hint.id}"
snippet = hint.code_snippet.strip()
snippet_lines = snippet.splitlines() if snippet else []
if "np." in hint.code_snippet and "import numpy as np" not in code and "import numpy as np" not in snippet:
snippet_lines.insert(0, "import numpy as np")
if "pd." in hint.code_snippet and "import pandas as pd" not in code and "import pandas as pd" not in snippet:
snippet_lines.insert(0, "import pandas as pd")
alias_lines = self._hint_alias_lines(code, hint, hint.code_snippet)
block_lines = [marker, "try:"]
for line in alias_lines + snippet_lines:
block_lines.append(f" {line}" if line.strip() else " ")
block_lines.extend(["except Exception:", " pass"])
return "\n".join(block_lines)
def _hint_alias_lines(self, code: str, hint: PreprocessingHint, snippet: str) -> list[str]:
lines: list[str] = []
if re.search(r"\bdf\b", snippet) and not re.search(r"(?m)^\s*df\s*=", code):
df_var = self._find_dataframe_var(code)
if df_var:
lines.append(f"df = {df_var}")
if re.search(r"\bcols\b", snippet) and not re.search(r"(?m)^\s*cols\s*=", code):
cols_var = self._select_cols_alias(code, hint.id)
if cols_var:
lines.append(f"cols = {cols_var}")
return lines
def _find_dataframe_var(self, code: str) -> str | None:
matches: list[str] = re.findall(r"(?m)^(\w+)\s*=\s*pd\.read_(?:csv|parquet|feather)\(", code)
if not matches:
return None
for name in matches:
if "train" in name.lower():
return name
return matches[0]
def _select_cols_alias(self, code: str, hint_id: str) -> str | None:
if hint_id in _ENCODING_HINT_IDS and "categorical_cols" in code:
return "categorical_cols"
if "numeric_cols" in code:
return "numeric_cols"
if "categorical_cols" in code:
return "categorical_cols"
return None
def _find_hint_insertion_index(self, body: list[str]) -> int | None:
insert_at = None
for idx, line in enumerate(body):
if not line or line.startswith((" ", "\t")):
continue
if re.search(r"\bpd\.read_(csv|parquet|feather)\b", line):
insert_at = idx + 1
return insert_at
def _append_hint_comment(self, code: str, hint: PreprocessingHint) -> str:
marker = f"{_HINT_COMMENT_PREFIX}{hint.id}"
if marker in code:
return code
imports, body = self._split_imports(code)
parts = [*imports]
if imports:
parts.append("")
parts.extend([marker, "", *body])
return "\n".join(parts).strip() + "\n"
def _update_hint_tracking(
self,
ctx: RunContext[EvolverDeps],
solution_code: str,
result: dict[str, Any],
previous_best_fitness: float | None,
) -> None:
tracker = ctx.deps.hint_tracker
if tracker is None or not ctx.deps.preprocessing_hints:
return
if not result.get("valid"):
return
stage = result.get("stage")
applied = detect_applied_hints(solution_code, ctx.deps.preprocessing_hints)
logfire.info("hint_tracking_attempt", stage=stage, applied_count=len(applied))
if not applied:
logfire.warning("no_hints_detected_in_solution", stage=stage)
return
cv_score_after = result.get("cv_score")
cv_score_before = self._score_from_fitness(previous_best_fitness, ctx.deps.competition.metric_direction)
if cv_score_after is None or cv_score_before is None:
return
delta = self._score_delta(cv_score_before, cv_score_after, ctx.deps.competition.metric_direction)
generation = len(ctx.deps.generation_history) + ctx.deps.generation_offset
saved = False
for hint in ctx.deps.preprocessing_hints:
if hint.id not in applied:
continue
record = HintAttemptRecord(
hint_id=hint.id,
competition_id=ctx.deps.competition.id,
generation=generation,
applied=True,
cv_score_before=cv_score_before,
cv_score_after=cv_score_after,
delta=delta,
)
tracker.record_attempt(record)
saved = True
if saved:
tracker.save()
def _summarize_openevolve_history(
self, programs: list[dict[str, Any]], population_size: int, metric_direction: str
) -> tuple[list[dict[str, Any]], int]:
history: list[dict[str, Any]] = []
improvement_count = 0
best_fitness: float | None = None
for idx, summary in enumerate(sorted(programs, key=lambda item: item.get("iteration", 0)), start=1):
fitness = summary.get("fitness")
if not isinstance(fitness, (int, float)):
cv_score = summary.get("cv_score")
if isinstance(cv_score, (int, float)):
fitness = self._fitness_from_score(cv_score, metric_direction)
else:
fitness = 0.0
fitness = float(fitness)
if best_fitness is None or fitness > best_fitness:
if best_fitness is not None:
improvement_count += 1
best_fitness = fitness
history.append(
{
"generation": idx,
"best_fitness": best_fitness or fitness,
"mean_fitness": fitness,
"worst_fitness": fitness,
"population_size": population_size,
"mutations": {"openevolve": 1},
}
)
return history, improvement_count
def _record_openevolve_hint_attempts(
self, deps: EvolverDeps, programs: list[dict[str, Any]], baseline_score: float | None
) -> None:
tracker = deps.hint_tracker
if tracker is None or not deps.preprocessing_hints:
return
metric_direction = deps.competition.metric_direction
best_score = baseline_score
for summary in sorted(programs, key=lambda item: item.get("iteration", 0)):
cv_score = summary.get("cv_score")
if not isinstance(cv_score, (int, float)):
continue
applied = summary.get("applied_hints") or []
if not applied:
if best_score is None:
best_score = float(cv_score)
else:
if metric_direction == "minimize" and cv_score < best_score:
best_score = float(cv_score)
elif metric_direction == "maximize" and cv_score > best_score:
best_score = float(cv_score)
continue
if best_score is None:
best_score = float(cv_score)
delta = self._score_delta(best_score, float(cv_score), metric_direction)
generation = int(summary.get("iteration") or 0)
for hint_id in applied:
if not isinstance(hint_id, str) or not hint_id.strip():
continue
record = HintAttemptRecord(
hint_id=hint_id,
competition_id=deps.competition.id,
generation=generation,
applied=True,
cv_score_before=best_score,
cv_score_after=float(cv_score),
delta=delta,
)
tracker.record_attempt(record)
if metric_direction == "minimize" and cv_score < best_score:
best_score = float(cv_score)
elif metric_direction == "maximize" and cv_score > best_score:
best_score = float(cv_score)
def _build_execution_env(self, validation_split: float) -> dict[str, str]:
return {"AGENT_K_VALIDATION_SPLIT": f"{validation_split:.6f}"}
def _fitness_from_score(self, score: float, direction: str) -> float:
return 1.0 / (1.0 + max(score, 0.0)) if direction == "minimize" else max(score, 0.0)
def _score_from_fitness(self, fitness: float | None, direction: str) -> float | None:
if fitness is None:
return None
if direction == "minimize":
if fitness <= 0:
return None
return (1.0 / fitness) - 1.0
return fitness
def _score_delta(self, before: float, after: float, direction: str) -> float:
if direction == "minimize":
return before - after
return after - before
def _solution_complexity(self, code: str) -> int:
return sum(1 for line in code.splitlines() if line.strip())
def _complexity_bin(self, complexity: int) -> int:
for idx, threshold in enumerate(_COMPLEXITY_BINS):
if complexity <= threshold:
return idx
return len(_COMPLEXITY_BINS)
def _model_family(self, code: str) -> str:
for family, pattern in _MODEL_FAMILY_PATTERNS:
if pattern.search(code):
return family
return "unknown"
def _solution_signature(self, code: str) -> str:
return hashlib.sha256(code.encode()).hexdigest()[:12]
def _is_valid_python(self, code: str) -> bool:
try:
ast.parse(code)
except SyntaxError:
return False
return True
def _call_name(self, node: ast.AST) -> str | None:
if isinstance(node, ast.Name):
return node.id
if isinstance(node, ast.Attribute):
return node.attr
return None
def _has_invalid_knn_params(self, code: str) -> bool:
try:
tree = ast.parse(code)
except SyntaxError:
return False
for node in ast.walk(tree):
if not isinstance(node, ast.Call):
continue
name = self._call_name(node.func)
if not name or name in {"KNeighborsClassifier", "KNeighborsRegressor"}:
continue
if name not in _MODEL_IMPORTS:
continue
for keyword in node.keywords:
if keyword.arg in _KNN_PARAM_KEYS:
return True
return False
def _apply_solution_policy(self, ctx: RunContext[EvolverDeps], code: str) -> str:
policy = self._resolve_technique_policy(ctx.deps)
if policy is None:
return code
updated, notes = apply_solution_policy(code, policy)
if notes:
logfire.warning("solution_policy_injection_failed", notes=notes)
updated = self._apply_target_column_guard(ctx.deps, updated)
updated = self._apply_feature_column_guard(updated)
return self._normalize_model_imports(updated)
def _apply_target_column_guard(self, deps: EvolverDeps, code: str) -> str:
if len(deps.target_columns) != 1 and len(deps.train_target_columns) != 1:
return code
def normalize(match: re.Match[str]) -> str:
index = int(match.group("index"))
if index <= 0:
return match.group(0)
name = match.group("name")
return f"{name}[0]"
return _TARGET_INDEX_PATTERN.sub(normalize, code)
def _apply_feature_column_guard(self, code: str) -> str:
"""Ensure feature column lists don't reference missing columns.
Some mutated solutions build ``numeric_cols``/``categorical_cols`` lists and then use
them in a ``ColumnTransformer``. If those lists drift out of sync with the actual
columns (or train/test alignment), pandas-based column selection will raise KeyError.
We inject a lightweight runtime guard that intersects these lists with the columns
present in both frames, preventing hard failures during evolution.
"""
marker = "# AGENT_K_FEATURE_GUARD"
if marker in code:
return code
numeric_match = _NUMERIC_COLS_PATTERN.search(code)
cat_match = _CATEGORICAL_COLS_PATTERN.search(code)
if numeric_match is None and cat_match is None:
return code
match = cat_match or numeric_match
if match is None:
return code
line_text = match.group(0)
if line_text.rstrip().endswith("\\"):
return code
openers = line_text.count("[") + line_text.count("(") + line_text.count("{")
closers = line_text.count("]") + line_text.count(")") + line_text.count("}")
if openers > closers:
return code
indent_prefix = match.group("indent")
insert_at = match.end()
guard = dedent(
f"""
{indent_prefix}{marker}
{indent_prefix}_train_cols = set(X.columns) if "X" in locals() else set(
{indent_prefix} train_df.columns if "train_df" in locals() else []
{indent_prefix})
{indent_prefix}_test_cols = set(test_df.columns) if "test_df" in locals() else _train_cols
{indent_prefix}_common_cols = _train_cols & _test_cols if _test_cols else _train_cols
{indent_prefix}if "numeric_cols" in locals():
{indent_prefix} numeric_cols = [c for c in list(numeric_cols) if c in _common_cols]
{indent_prefix}if "categorical_cols" in locals():
{indent_prefix} categorical_cols = [c for c in list(categorical_cols) if c in _common_cols]
"""
).rstrip()
updated = f"{code[:insert_at]}{guard}{code[insert_at:]}"
if not self._is_valid_python(updated):
return code
return updated
def _resolve_technique_policy(self, deps: EvolverDeps) -> TechniquePolicy | None:
if deps.technique_policy is not None:
return deps.technique_policy
profile = self._resolve_problem_profile(deps)
return build_technique_policy(profile)
def _resolve_problem_profile(self, deps: EvolverDeps) -> ProblemProfile:
if deps.problem_profile is not None:
return deps.problem_profile
return build_problem_profile(
deps.competition,
CompetitionSchema(
id_column=deps.id_column,
target_columns=deps.target_columns,
train_target_columns=deps.train_target_columns,
),
)
def _resolve_fitness_policy(self, deps: EvolverDeps) -> FitnessPolicy:
if deps.fitness_policy is not None:
return deps.fitness_policy
profile = self._resolve_problem_profile(deps)
return build_fitness_policy(profile, None, max_runtime_ms=int(deps.solution_timeout * 1000))
def _compute_fitness(
self,
ctx: RunContext[EvolverDeps],
*,
cv_score: float,
runtime_ms: int,
code: str,
stage: str | None,
valid: bool,
) -> float:
policy = self._resolve_fitness_policy(ctx.deps)
fitness_fn = build_fitness_function(policy)
return fitness_fn(
FitnessInput(
cv_score=cv_score,
runtime_ms=runtime_ms,
complexity=self._solution_complexity(code),
valid=valid,
stage=stage,
code=code,
)
)
def _adaptive_magnitude(self, deps: EvolverDeps) -> float:
history = deps.generation_history[-5:]
bests: list[float] = []
for entry in history:
if isinstance(entry, dict):
bests.append(float(entry.get("best_fitness", 0.0)))
else:
bests.append(float(getattr(entry, "best_fitness", 0.0)))
if len(bests) < 2:
return 0.25
improvement = max(bests) - min(bests)
if improvement < 1e-4:
return 0.35
if improvement > 0.05:
return 0.15
return 0.22
def _build_archive_entry(self, code: str, fitness: float, cv_score: float) -> EvolutionArchiveEntry:
complexity = self._solution_complexity(code)
return EvolutionArchiveEntry(
code=code,
fitness=fitness,
cv_score=cv_score,
complexity=complexity,
complexity_bin=self._complexity_bin(complexity),
model_family=self._model_family(code),
signature=self._solution_signature(code),
)
def _update_elite_archive(self, deps: EvolverDeps, entry: EvolutionArchiveEntry) -> None:
key = (entry.complexity_bin, entry.model_family)
existing = deps.elite_archive.get(key)
if existing is None or entry.fitness > existing.fitness:
deps.elite_archive[key] = entry
def _select_elite_samples(self, deps: EvolverDeps, *, top: int, diverse: int) -> list[EvolutionArchiveEntry]:
entries = list(deps.elite_archive.values())
if not entries:
return []
sorted_entries = sorted(entries, key=lambda entry: entry.fitness, reverse=True)
selected: list[EvolutionArchiveEntry] = []
for entry in sorted_entries[:top]:
selected.append(entry)
used_signatures = {entry.signature for entry in selected}
used_families = {entry.model_family for entry in selected}
used_bins = {entry.complexity_bin for entry in selected}
target_size = top + diverse
if diverse > 0:
for entry in sorted_entries:
if entry.signature in used_signatures:
continue
if entry.model_family not in used_families or entry.complexity_bin not in used_bins:
selected.append(entry)
used_signatures.add(entry.signature)
used_families.add(entry.model_family)
used_bins.add(entry.complexity_bin)
if len(selected) >= target_size:
break
if len(selected) < target_size:
for entry in sorted_entries:
if entry.signature in used_signatures:
continue
selected.append(entry)
if len(selected) >= target_size:
break
return selected
async def _run_evaluation(
self, ctx: RunContext[EvolverDeps], solution_code: str, *, validation_split: float
) -> dict[str, Any]:
code_signature = self._solution_signature(solution_code)
tracker = ctx.deps.experiment_tracker
if tracker is not None:
cached = tracker.find_latest_by_code_signature(ctx.deps.competition.id, code_signature)
if cached is not None:
cached_stage = cached.metrics.get("stage")
if cached_stage in {"full", "cached"} and (
cached.cv_score is not None or cached.metrics.get("valid") is False
):
cached_fitness = cached.metrics.get("fitness")
cached_valid = cached.metrics.get("valid", cached.cv_score is not None)
cached_error = cached.metrics.get("error")
if cached_fitness is None and cached.cv_score is not None:
cached_fitness = self._fitness_from_score(
cached.cv_score, ctx.deps.competition.metric_direction
)
return {
"fitness": round(float(cached_fitness or 0.0), 6),
"cv_score": round(float(cached.cv_score or 0.0), 6),
"valid": bool(cached_valid),
"runtime_ms": 0,
"timed_out": False,
"returncode": 0 if cached_valid else 1,
"error": cached_error,
"cached": True,
"stage": "cached",
}
if not self._settings.cascade_evaluation or self._settings.cascade_stage1_rows <= 0:
result = await self._evaluate_solution(ctx, solution_code, validation_split=validation_split, stage="full")
result["stage"] = "full"
return self._record_evaluation(ctx, solution_code, code_signature, result)
quick_timeout = min(self._settings.cascade_stage1_timeout, ctx.deps.solution_timeout)
quick_result = await self._evaluate_solution(
ctx,
solution_code,
validation_split=validation_split,
max_rows=self._settings.cascade_stage1_rows,
timeout_seconds=quick_timeout,
stage="stage1",
)
quick_result["stage"] = "stage1"
if not quick_result["valid"]:
return self._record_evaluation(ctx, solution_code, code_signature, quick_result)
threshold = None
if ctx.deps.best_fitness is not None:
threshold = max(
ctx.deps.best_fitness * self._settings.cascade_relative_threshold,
self._settings.cascade_floor_threshold,
)
if threshold is not None and quick_result["fitness"] < threshold:
quick_result["stage_threshold"] = threshold
return self._record_evaluation(ctx, solution_code, code_signature, quick_result)
full_result = await self._evaluate_solution(ctx, solution_code, validation_split=validation_split, stage="full")
full_result["stage"] = "full"
full_result["stage1_fitness"] = quick_result["fitness"]
full_result["stage1_cv_score"] = quick_result["cv_score"]
full_result["stage1_runtime_ms"] = quick_result["runtime_ms"]
full_result["runtime_ms"] += quick_result["runtime_ms"]
return self._record_evaluation(ctx, solution_code, code_signature, full_result)
async def _evaluate_solution(
self,
ctx: RunContext[EvolverDeps],
solution_code: str,
*,
validation_split: float,
stage: str | None,
max_rows: int | None = None,
timeout_seconds: int | None = None,
) -> dict[str, Any]:
with tempfile.TemporaryDirectory(dir=str(ctx.deps.data_dir)) as run_dir:
run_path = Path(run_dir)
train_df, val_features, y_val, id_column = _prepare_validation_split(
train_path=ctx.deps.train_path,
id_column=ctx.deps.id_column,
target_columns=list(ctx.deps.train_target_columns or ctx.deps.target_columns),
validation_split=validation_split,
)
if max_rows is not None and max_rows > 0:
train_df = train_df.head(max_rows).copy()
val_features = val_features.head(max_rows).copy()
y_val = y_val.head(max_rows).copy()
elif ctx.deps.max_generations <= 5:
train_df = train_df.head(800).copy()
val_features = val_features.head(800).copy()
y_val = y_val.head(800).copy()
target_columns = list(ctx.deps.train_target_columns or ctx.deps.target_columns)
train_df.to_csv(run_path / "train.csv", index=False)
val_features.to_csv(run_path / "test.csv", index=False)
sample_submission = pd.DataFrame({id_column: val_features[id_column].values})
for col in target_columns:
sample_submission[col] = 0.0
sample_submission.to_csv(run_path / "sample_submission.csv", index=False)
execution = await execute_solution(
solution_code,
run_path,
timeout_seconds=timeout_seconds or ctx.deps.solution_timeout,
env=self._build_execution_env(validation_split),
use_builtin_code_execution=True,
model_spec=self._settings.model,
)
submission_path = run_path / "submission.csv"
score: float | None = None
error: str | None = None
if execution.timed_out:
error = "Execution timed out"
elif execution.returncode != 0:
error = f"Execution failed (exit {execution.returncode})"
elif not submission_path.exists():
error = "submission.csv not found after execution"
else:
try:
score = _score_submission(
submission_path=submission_path,
metric=ctx.deps.competition.metric,
id_column=id_column,
target_columns=target_columns,
y_val=y_val,
)
except Exception as exc:
error = f"Unable to score submission: {exc}"
error_category: str | None = None
error_feedback = ""
execution_status = "success"
stderr_text = execution.stderr or ""
stderr_trimmed = stderr_text.strip()
if error is not None:
error_category, error_feedback = _build_error_feedback(
stderr=stderr_text, error=error, timed_out=execution.timed_out, returncode=execution.returncode
)
self._record_failure(ctx.deps, error_category, error_feedback)
execution_status = "failed"
else:
ctx.deps.last_error_feedback = None
cv_score = score if score is not None else 0.0
fitness = (
self._compute_fitness(
ctx,
cv_score=cv_score,
runtime_ms=execution.runtime_ms,
code=solution_code,
stage=stage,
valid=error is None,
)
if error is None
else 0.0
)
return {
"fitness": round(fitness, 6),
"cv_score": round(cv_score, 6),
"valid": error is None,
"runtime_ms": execution.runtime_ms,
"timed_out": execution.timed_out,
"returncode": execution.returncode,
"error": error,
"stderr": stderr_trimmed if stderr_trimmed else None,
"error_category": error_category,
"error_feedback": error_feedback,
"execution_status": execution_status,
}
def _record_evaluation(
self, ctx: RunContext[EvolverDeps], solution_code: str, code_signature: str, result: dict[str, Any]
) -> dict[str, Any]:
tracker = ctx.deps.experiment_tracker
if tracker is None:
return result
metadata = extract_solution_metadata(solution_code)
record = ExperimentRecord(
competition_id=ctx.deps.competition.id,
phase="evolution",
model_name=metadata.model_name,
model_family=metadata.model_family,
hyperparameters=metadata.hyperparameters,
feature_set=metadata.feature_set,
feature_engineering=metadata.feature_engineering,
target_transform=metadata.target_transform,
metrics={
"fitness": result.get("fitness"),
"cv_score": result.get("cv_score"),
"stage": result.get("stage"),
"runtime_ms": result.get("runtime_ms"),
"valid": result.get("valid"),
"error": result.get("error"),
"error_category": result.get("error_category"),
"error_feedback": result.get("error_feedback"),
"timed_out": result.get("timed_out"),
"execution_status": result.get("execution_status"),
},
cv_score=result.get("cv_score"),
code_signature=code_signature,
dataset_fingerprint=ctx.deps.competition.id,
)
tracker.record_experiment(record)
return result
def _record_failure(self, deps: EvolverDeps, error_category: str, error_feedback: str) -> None:
deps.failure_counts[error_category] = deps.failure_counts.get(error_category, 0) + 1
deps.last_error_feedback = error_feedback
async def _submit_solution(
self, ctx: RunContext[EvolverDeps], solution_code: str, *, message: str
) -> dict[str, Any]:
solution_code = self._apply_solution_policy(ctx, solution_code)
with tempfile.TemporaryDirectory(dir=str(ctx.deps.data_dir)) as run_dir:
run_path = Path(run_dir)
stage_competition_data(
ctx.deps.train_path,
ctx.deps.test_path,
ctx.deps.sample_path,
run_path,
competition_id=ctx.deps.competition.id,
)
execution = await execute_solution(
solution_code,
run_path,
timeout_seconds=ctx.deps.solution_timeout,
env=self._build_execution_env(0.2),
use_builtin_code_execution=True,
model_spec=self._settings.model,
)
submission_path = run_path / "submission.csv"
error = (
"Execution timed out"
if execution.timed_out
else f"Execution failed (exit {execution.returncode})"
if execution.returncode != 0
else "submission.csv not found after execution"
if not submission_path.exists()
else None
)
if error:
return {
"submission_id": None,
"status": "failed",
"error": error,
"generation": len(ctx.deps.generation_history),
"runtime_ms": execution.runtime_ms,
}
submission = await ctx.deps.platform_adapter.submit(
ctx.deps.competition.id, str(submission_path), message=message
)
tracker = ctx.deps.experiment_tracker
if tracker is not None:
metadata = extract_solution_metadata(solution_code)
tracker.record_experiment(
ExperimentRecord(
competition_id=ctx.deps.competition.id,
phase="submission",
model_name=metadata.model_name,
model_family=metadata.model_family,
hyperparameters=metadata.hyperparameters,
feature_set=metadata.feature_set,
feature_engineering=metadata.feature_engineering,
target_transform=metadata.target_transform,
metrics={"status": submission.status},
submission_id=submission.id,
code_signature=self._solution_signature(solution_code),
dataset_fingerprint=ctx.deps.competition.id,
)
)
return {
"submission_id": submission.id,
"status": submission.status,
"generation": len(ctx.deps.generation_history),
"runtime_ms": execution.runtime_ms,
}
def _seeded_rng(self, solution_code: str, params: dict[str, Any], salt: str) -> random.Random:
seed_input = f"{salt}:{solution_code}:{sorted(params.items())}".encode()
seed = int(hashlib.sha256(seed_input).hexdigest(), 16)
return random.Random(seed)
def _mutate_numbers(self, code: str, rng: random.Random, *, max_changes: int, magnitude: float) -> str:
changes = 0
def replacer(match: re.Match[str]) -> str:
nonlocal changes
if changes >= max_changes:
return match.group(0)
raw = match.group(1)
try:
value = float(raw)
except ValueError:
return raw
if value == 0:
value = 0.1
direction = rng.choice([-1, 1])
mutated = value * (1 + direction * magnitude)
changes += 1
return str(max(1, int(round(mutated)))) if raw.isdigit() else f"{mutated:.6g}"
return _NUMBER_PATTERN.sub(replacer, code)
def _ensure_import(self, code: str, module: str, symbol: str) -> str:
imports, body = self._split_imports(code)
import_prefix = f"from {module} import"
for line in imports:
stripped = line.strip()
if stripped.startswith(import_prefix) and symbol in stripped:
return code
imports.append(f"{import_prefix} {symbol}")
merged_imports = self._merge_imports(imports, [])
if merged_imports:
return "\n".join([*merged_imports, "", *body])
return "\n".join(body)
def _normalize_model_imports(self, code: str) -> str:
"""Ensure sklearn model imports use the correct module."""
imports, body = self._split_imports(code)
if not imports:
return code
extra_imports: dict[str, list[str]] = {}
normalized_imports: list[str] = []
for line in imports:
match = re.match(r"\s*from\s+(\S+)\s+import\s+(.+)", line)
if not match:
normalized_imports.append(line)
continue
module = match.group(1)
symbols = [symbol.strip() for symbol in match.group(2).split(",") if symbol.strip()]
kept: list[str] = []
for symbol in symbols:
base_symbol = symbol.split(" as ", 1)[0].strip()
expected_module = _MODEL_IMPORTS.get(base_symbol)
if expected_module and expected_module != module:
extra_imports.setdefault(expected_module, []).append(symbol)
continue
kept.append(symbol)
if kept:
normalized_imports.append(f"from {module} import {', '.join(kept)}")
for module, symbols in extra_imports.items():
unique_symbols: list[str] = []
seen: set[str] = set()
for symbol in symbols:
if symbol in seen:
continue
seen.add(symbol)
unique_symbols.append(symbol)
inserted = False
for idx, line in enumerate(normalized_imports):
match = re.match(r"\s*from\s+(\S+)\s+import\s+(.+)", line)
if not match or match.group(1) != module:
continue
existing = [symbol.strip() for symbol in match.group(2).split(",") if symbol.strip()]
existing_set = set(existing)
for symbol in unique_symbols:
if symbol not in existing_set:
existing.append(symbol)
existing_set.add(symbol)
normalized_imports[idx] = f"from {module} import {', '.join(existing)}"
inserted = True
break
if not inserted:
normalized_imports.append(f"from {module} import {', '.join(unique_symbols)}")
merged_imports = self._merge_imports(normalized_imports, [])
if merged_imports:
return "\n".join([*merged_imports, "", *body])
return "\n".join(body)
def _swap_model_family(self, code: str) -> str:
ordered_swaps = sorted(_MODEL_SWAPS.items(), key=lambda item: len(item[0]), reverse=True)
for source, target in ordered_swaps:
pattern = re.compile(rf"\b{re.escape(source)}\b")
if not pattern.search(code):
continue
updated = pattern.sub(target, code)
module = _MODEL_IMPORTS.get(target)
if module:
updated = self._ensure_import(updated, module, target)
return updated
return code
def _inject_scaler(self, code: str) -> str:
if "StandardScaler" in code:
return code
match = _NUMERIC_PIPELINE_PATTERN.search(code)
if not match:
return code
steps_block = match.group("steps")
if "SimpleImputer" not in steps_block or "StandardScaler" in steps_block:
return code
lines = steps_block.splitlines()
inserted = False
for idx, line in enumerate(lines):
if "SimpleImputer" in line:
indent_match = re.match(r"\s*", line)
if not indent_match:
continue
indent = indent_match.group(0)
lines.insert(idx + 1, f'{indent}("scaler", StandardScaler()),')
inserted = True
break
if not inserted:
return code
updated_steps = "\n".join(lines)
updated = f"{code[: match.start('steps')]}{updated_steps}{code[match.end('steps') :]}"
return self._ensure_import(updated, "sklearn.preprocessing", "StandardScaler")
def _swap_scaler(self, code: str) -> str:
scaler_swaps = {
"StandardScaler": "MinMaxScaler",
"MinMaxScaler": "RobustScaler",
"RobustScaler": "StandardScaler",
}
for source, target in scaler_swaps.items():
pattern = re.compile(rf"\b{re.escape(source)}\b")
if not pattern.search(code):
continue
updated = pattern.sub(target, code)
return self._ensure_import(updated, "sklearn.preprocessing", target)
return code
def _inject_feature_engineering(self, code: str) -> str:
if "PolynomialFeatures" not in code:
updated = self._insert_numeric_step(code, '("poly", PolynomialFeatures(degree=2, include_bias=False)),')
if updated != code:
return self._ensure_import(updated, "sklearn.preprocessing", "PolynomialFeatures")
if "KBinsDiscretizer" not in code:
updated = self._insert_numeric_step(
code, '("binning", KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")),'
)
if updated != code:
return self._ensure_import(updated, "sklearn.preprocessing", "KBinsDiscretizer")
return code
def _inject_feature_selection(self, code: str) -> str:
if "VarianceThreshold" in code:
return code
updated = self._insert_numeric_step(code, '("selector", VarianceThreshold(threshold=0.0)),')
if updated != code:
return self._ensure_import(updated, "sklearn.feature_selection", "VarianceThreshold")
return code
def _insert_numeric_step(self, code: str, step_line: str) -> str:
match = _NUMERIC_PIPELINE_PATTERN.search(code)
if not match:
return code
steps_block = match.group("steps")
lines = steps_block.splitlines()
insert_index = None
for idx, line in enumerate(lines):
if "SimpleImputer" in line or "scaler" in line:
insert_index = idx + 1
if insert_index is None:
return code
indent_match = re.match(r"\s*", lines[insert_index - 1])
if not indent_match:
return code
indent = indent_match.group(0)
lines.insert(insert_index, f"{indent}{step_line}")
updated_steps = "\n".join(lines)
return f"{code[: match.start('steps')]}{updated_steps}{code[match.end('steps') :]}"
def _inject_ratio_features(self, code: str) -> str:
if "ratio_features" in code:
return code
match = _NUMERIC_COLS_PATTERN.search(code)
if not match or "test_df" not in code or "X =" not in code:
return code
indent = match.group("indent")
snippet = dedent(
f"""
{indent}ratio_features = list(zip(numeric_cols[:3], numeric_cols[1:4]))
{indent}for left, right in ratio_features:
{indent} if left not in X.columns or right not in X.columns:
{indent} continue
{indent} denom = X[right].replace(0, np.nan)
{indent} X[f"{{left}}_over_{{right}}"] = X[left] / denom
{indent} test_df[f"{{left}}_over_{{right}}"] = (
{indent} test_df[left] / test_df[right].replace(0, np.nan)
{indent} )
"""
).strip("\n")
insert_at = match.end()
updated = f"{code[:insert_at]}\n{snippet}{code[insert_at:]}"
return updated if "import numpy as np" in updated else code
def _inject_fillna(self, code: str) -> str:
if "fillna(" in code or not (match := _FILLNA_PATTERN.search(code)):
return code
insert = f"\n{match['indent']}{match['var']} = {match['var']}.fillna(0)"
return f"{code[: match.end()]}{insert}{code[match.end() :]}"
def _merge_imports(self, primary: list[str], secondary: list[str]) -> list[str]:
seen: set[str] = set()
result: list[str] = []
for line in primary + secondary:
normalized = line.strip()
if normalized and normalized not in seen:
seen.add(normalized)
result.append(line)
return result
def _split_imports(self, code: str) -> tuple[list[str], list[str]]:
def is_import(line: str) -> bool:
stripped = line.lstrip()
return stripped.startswith(("import ", "from ")) and not stripped.startswith("from __future__")
lines = code.splitlines()
return [line for line in lines if is_import(line)], [line for line in lines if not is_import(line)]
def _extract_top_level_defs(self, code: str) -> dict[str, str]:
return {
match.group(1).split()[1].split("(")[0]: match.group(0).rstrip() for match in _DEF_PATTERN.finditer(code)
}
def _format_param_value(self, value: Any) -> str:
return json.dumps(value) if isinstance(value, str) else str(value)
def _insert_knn_param(self, code: str, param: str, value: Any) -> str:
match = re.search(r"\bKNeighbors(?:Classifier|Regressor)\s*\(", code)
if not match:
return code
literal = self._format_param_value(value)
insertion = f"{param}={literal}, "
return f"{code[: match.end()]}{insertion}{code[match.end() :]}"
def _replace_or_insert_param(self, code: str, param: str, value: Any) -> str:
pattern = _HYPERPARAM_PATTERNS.get(param)
if not pattern:
return code
if match := pattern.search(code):
return pattern.sub(f"{match.group(1)}{self._format_param_value(value)}", code, count=1)
return self._insert_knn_param(code, param, value)
def _mutate_numeric_param(self, code: str, param: str, rng: random.Random, params: dict[str, Any]) -> str:
pattern = _HYPERPARAM_PATTERNS.get(param)
if not pattern:
return code
magnitude = float(params.get("magnitude", 0.2))
if match := pattern.search(code):
try:
value = float(match.group(2))
except ValueError:
return code
mutated = value * (1 + magnitude * rng.choice([-1, 1]))
bounds = _HYPERPARAM_BOUNDS.get(param)
if bounds is not None:
mutated = min(max(mutated, bounds[0]), bounds[1])
if param in _HYPERPARAM_INTEGER_KEYS:
mutated_text = str(max(1, int(round(mutated))))
else:
mutated_text = f"{max(0.0001, mutated):.6g}"
return pattern.sub(f"{match.group(1)}{mutated_text}", code, count=1)
bounds = _HYPERPARAM_BOUNDS.get(param, (1.0, 30.0))
sampled_value: int | float
if param in _HYPERPARAM_INTEGER_KEYS:
sampled_value = max(1, int(round(rng.uniform(bounds[0], bounds[1]))))
else:
sampled_value = rng.uniform(bounds[0], bounds[1])
return self._replace_or_insert_param(code, param, sampled_value)
def _apply_knn_mutation(self, code: str, params: dict[str, Any]) -> str:
if not _KNN_MODEL_PATTERN.search(code):
return code
rng = self._seeded_rng(code, params, "knn")
mutation = rng.choice(("metric", "weights", "neighbors", "leaf_size", "algorithm", "scaler"))
if mutation == "metric":
metric = rng.choice(("euclidean", "manhattan", "minkowski"))
updated = self._replace_or_insert_param(code, "metric", metric)
if metric == "minkowski":
p_value = rng.randint(1, 5)
else:
p_value = 1 if metric == "manhattan" else 2
return self._replace_or_insert_param(updated, "p", p_value)
if mutation == "weights":
return self._replace_or_insert_param(code, "weights", rng.choice(_CATEGORICAL_HYPERPARAMS["weights"]))
if mutation == "algorithm":
return self._replace_or_insert_param(code, "algorithm", rng.choice(_CATEGORICAL_HYPERPARAMS["algorithm"]))
if mutation == "neighbors":
return self._mutate_numeric_param(code, "n_neighbors", rng, params)
if mutation == "leaf_size":
return self._mutate_numeric_param(code, "leaf_size", rng, params)
if mutation == "scaler":
swapped = self._swap_scaler(code)
if swapped != code:
return swapped
return self._inject_scaler(code)
return code
def _apply_point_mutation(self, code: str, params: dict[str, Any]) -> str:
rng = self._seeded_rng(code, params, "point")
magnitude = float(params.get("delta", 0.1))
max_changes = int(params.get("max_changes", 2))
return self._mutate_numbers(code, rng, max_changes=max_changes, magnitude=magnitude)
def _apply_structural_mutation(self, code: str, params: dict[str, Any]) -> str:
for mutate in (
self._swap_model_family,
self._swap_scaler,
self._inject_scaler,
self._inject_feature_engineering,
self._inject_feature_selection,
self._inject_ratio_features,
self._inject_fillna,
):
if (result := mutate(code)) != code:
return result
return self._apply_point_mutation(code, params)
def _apply_hyperparameter_mutation(self, code: str, params: dict[str, Any]) -> str:
rng = self._seeded_rng(code, params, "hyperparameter")
magnitude = float(params.get("magnitude", 0.2))
requested = str(params.get("param", "")).strip()
if _KNN_MODEL_PATTERN.search(code):
if (knn_mutated := self._apply_knn_mutation(code, params)) != code:
return knn_mutated
candidates: list[tuple[str, re.Pattern[str], re.Match[str]]] = []
for name, pattern in _HYPERPARAM_PATTERNS.items():
if requested and name != requested:
continue
if match := pattern.search(code):
candidates.append((name, pattern, match))
if not candidates:
return self._apply_point_mutation(code, params)
name, pattern, match = rng.choice(candidates)
if name in _CATEGORICAL_HYPERPARAMS:
current = match.group(2).strip().strip("'\"")
options = list(_CATEGORICAL_HYPERPARAMS[name])
choices = [option for option in options if option != current]
mutated_cat = rng.choice(choices or options)
return pattern.sub(f"{match.group(1)}{json.dumps(mutated_cat)}", code, count=1)
try:
value = float(match.group(2))
except ValueError:
return self._apply_point_mutation(code, params)
mutated_val: float = value * (1 + magnitude * rng.choice([-1, 1]))
bounds = _HYPERPARAM_BOUNDS.get(name)
if bounds is not None:
mutated_val = min(max(mutated_val, bounds[0]), bounds[1])
if name in _HYPERPARAM_INTEGER_KEYS:
mutated_text = str(max(1, int(round(mutated_val))))
else:
mutated_text = f"{max(0.0001, mutated_val):.6g}"
return pattern.sub(f"{match.group(1)}{mutated_text}", code, count=1)
def _apply_crossover(self, code: str, other: str, params: dict[str, Any]) -> str:
if not other.strip():
return code
primary_imports, primary_body = self._split_imports(code)
other_imports, _ = self._split_imports(other)
primary_defs = self._extract_top_level_defs(code)
extra_defs = [block for name, block in self._extract_top_level_defs(other).items() if name not in primary_defs]
body_parts = ["\n".join(primary_body).strip(), *extra_defs]
imports = "\n".join(self._merge_imports(primary_imports, other_imports))
body = "\n\n".join(part for part in body_parts if part)
return f"{imports}\n\n{body}" if imports else body
|