Core domain models for AGENT-K.
@notice: |
Core domain models for AGENT-K.
@dev: |
See module for implementation details and extension points.
@graph:
id: agent_k.core.models
provides:
- agent_k.core.models
pattern: domain-models
@agent-guidance:
do:
- "Use agent_k.core.models as the canonical home for this capability."
do_not:
- "Create parallel modules without updating @similar or @graph."
@human-review:
last-verified: 2026-01-26
owners:
- agent-k-core
(c) Mike Casale 2025.
Licensed under the MIT License.
CompetitionType
Bases: StrEnum
Type of Kaggle competition.
@pattern:
name: enumeration
rationale: "StrEnum for string-serializable competition categories."
Source code in agent_k/core/models.py
93
94
95
96
97
98
99
100
101
102
103
104
105 | class CompetitionType(StrEnum):
"""Type of Kaggle competition.
@pattern:
name: enumeration
rationale: "StrEnum for string-serializable competition categories."
"""
FEATURED = "featured"
RESEARCH = "research"
GETTING_STARTED = "getting_started"
PLAYGROUND = "playground"
COMMUNITY = "community"
|
SubjectDomain
Bases: StrEnum
Subject domains for competition classification.
@pattern:
name: enumeration
rationale: "StrEnum for ML domain categories."
Source code in agent_k/core/models.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124 | class SubjectDomain(StrEnum):
"""Subject domains for competition classification.
@pattern:
name: enumeration
rationale: "StrEnum for ML domain categories."
"""
FINANCE = "finance"
MEDICAL = "medical"
WEATHER = "weather"
COMPUTER_VISION = "computer_vision"
NLP = "nlp"
TABULAR = "tabular"
TIME_SERIES = "time_series"
AUDIO = "audio"
GEOSPATIAL = "geospatial"
|
EvaluationMetric
Bases: StrEnum
Standard evaluation metrics for competitions.
@pattern:
name: enumeration
rationale: "StrEnum for standard ML evaluation metrics."
Source code in agent_k/core/models.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148 | class EvaluationMetric(StrEnum):
"""Standard evaluation metrics for competitions.
@pattern:
name: enumeration
rationale: "StrEnum for standard ML evaluation metrics."
"""
# Classification
ACCURACY = "accuracy"
AUC = "auc"
LOG_LOSS = "logLoss"
F1 = "f1"
# Regression
RMSE = "rmse"
MAE = "mae"
RMSLE = "rmsle"
# Ranking
MAP = "map"
NDCG = "ndcg"
|
Competition
Bases: BaseModel
Kaggle competition entity.
Represents a competition with all metadata required for evaluation
and participation decisions.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for competition metadata."
Source code in agent_k/core/models.py
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204 | class Competition(BaseModel):
"""Kaggle competition entity.
Represents a competition with all metadata required for evaluation
and participation decisions.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for competition metadata."
"""
model_config = ConfigDict(frozen=True, str_strip_whitespace=True, validate_default=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
id: CompetitionId = Field(
...,
min_length=1,
max_length=100,
pattern=r"^[a-zA-Z0-9-]+$",
description="Unique competition identifier (slug)",
)
title: str = Field(..., min_length=1, max_length=500, description="Competition display title")
description: str | None = Field(default=None, max_length=10000, description="Competition description")
competition_type: CompetitionType = Field(..., description="Category of competition")
metric: EvaluationMetric = Field(..., description="Primary evaluation metric")
metric_direction: MetricDirection = Field(
default="maximize", description="Whether higher or lower metric values are better"
)
deadline: datetime = Field(..., description="Competition submission deadline (UTC)")
prize_pool: int | None = Field(default=None, ge=0, description="Total prize pool in USD")
max_team_size: int = Field(default=1, ge=1, le=100, description="Maximum allowed team size")
max_daily_submissions: int = Field(default=5, ge=1, description="Maximum submissions per day")
tags: frozenset[str] = Field(default_factory=frozenset, description="Competition tags/categories")
url: str | None = Field(default=None, description="Full URL to competition page")
@field_validator("deadline")
@classmethod
def validate_deadline_timezone(cls, v: datetime) -> datetime:
"""Ensure deadline has timezone information."""
if v.tzinfo is None:
raise ValueError("deadline must be timezone-aware")
return v
@computed_field # type: ignore[prop-decorator]
@property
def is_active(self) -> bool:
"""Whether competition is still accepting submissions."""
return datetime.now(UTC) < self.deadline
@computed_field # type: ignore[prop-decorator]
@property
def days_remaining(self) -> int:
"""Days until deadline (negative if passed)."""
delta = self.deadline - datetime.now(UTC)
return delta.days
|
validate_deadline_timezone
classmethod
validate_deadline_timezone(v: datetime) -> datetime
Ensure deadline has timezone information.
Source code in agent_k/core/models.py
185
186
187
188
189
190
191 | @field_validator("deadline")
@classmethod
def validate_deadline_timezone(cls, v: datetime) -> datetime:
"""Ensure deadline has timezone information."""
if v.tzinfo is None:
raise ValueError("deadline must be timezone-aware")
return v
|
is_active
property
Whether competition is still accepting submissions.
days_remaining
property
Days until deadline (negative if passed).
LeaderboardEntry
Bases: BaseModel
Entry in competition leaderboard.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for leaderboard row data."
Source code in agent_k/core/models.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221 | class LeaderboardEntry(BaseModel):
"""Entry in competition leaderboard.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for leaderboard row data."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
rank: int = Field(..., ge=1, description="Position on leaderboard")
team_name: str = Field(..., min_length=1, description="Team name")
score: float = Field(..., description="Public leaderboard score")
entries: int = Field(default=1, ge=1, description="Number of submissions")
last_submission: datetime | None = Field(default=None, description="Last submission time")
|
Submission
Bases: BaseModel
Competition submission entity.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for submission records."
Source code in agent_k/core/models.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241 | class Submission(BaseModel):
"""Competition submission entity.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for submission records."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
id: str = Field(..., description="Unique submission identifier")
competition_id: CompetitionId = Field(..., description="Target competition")
file_name: str = Field(..., description="Submission file name")
submitted_at: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Submission timestamp")
public_score: float | None = Field(default=None, description="Public leaderboard score (if evaluated)")
private_score: float | None = Field(default=None, description="Private leaderboard score (after competition ends)")
status: str = Field(default="pending", pattern=r"^(pending|complete|error)$", description="Submission status")
error_message: str | None = Field(default=None, description="Error message if failed")
|
Bases: BaseModel
Base model for tool invocation tracking.
@pattern:
name: immutable-entity
rationale: "Base frozen model for tool call telemetry."
Source code in agent_k/core/models.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263 | class ToolCall(BaseModel):
"""Base model for tool invocation tracking.
@pattern:
name: immutable-entity
rationale: "Base frozen model for tool call telemetry."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
id: str = Field(..., description="Unique tool call identifier")
type: ToolType = Field(..., description="Type of tool")
operation: str = Field(..., description="Operation name")
params: dict[str, Any] = Field(default_factory=dict, description="Tool parameters")
thinking: str | None = Field(default=None, description="Agent thinking block")
result: Any | None = Field(default=None, description="Tool result payload")
error: str | None = Field(default=None, description="Tool error message")
started_at: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Tool start time")
completed_at: datetime | None = Field(default=None, description="Tool completion time")
duration_ms: int | None = Field(default=None, description="Duration in milliseconds")
|
WebSearchCall
Bases: ToolCall
Web search tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with web search specific fields."
Source code in agent_k/core/models.py
266
267
268
269
270
271
272
273
274
275
276
277 | class WebSearchCall(ToolCall):
"""Web search tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with web search specific fields."
"""
type: ToolType = Field(default="web_search", description="Tool type")
query: str = Field(..., description="Search query")
result_count: int | None = Field(default=None, description="Number of results returned")
results: list[dict[str, str]] = Field(default_factory=list, description="Search result entries")
|
KaggleMCPCall
Bases: ToolCall
Kaggle MCP tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with Kaggle API specific fields."
Source code in agent_k/core/models.py
280
281
282
283
284
285
286
287
288
289 | class KaggleMCPCall(ToolCall):
"""Kaggle MCP tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with Kaggle API specific fields."
"""
type: ToolType = Field(default="kaggle_mcp", description="Tool type")
competition_id: CompetitionId | None = Field(default=None, description="Target competition id")
|
CodeExecutorCall
Bases: ToolCall
Code execution tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with code execution specific fields."
Source code in agent_k/core/models.py
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306 | class CodeExecutorCall(ToolCall):
"""Code execution tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with code execution specific fields."
"""
type: ToolType = Field(default="code_executor", description="Tool type")
code: str = Field(..., description="Executed code")
language: str = Field(default="python", description="Execution language")
stdout: str | None = Field(default=None, description="Captured stdout")
stderr: str | None = Field(default=None, description="Captured stderr")
execution_time_ms: int | None = Field(default=None, description="Execution time in ms")
memory_usage_mb: float | None = Field(default=None, description="Memory usage in MB")
|
MemoryCall
Bases: ToolCall
Memory operation tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with memory operation specific fields."
Source code in agent_k/core/models.py
309
310
311
312
313
314
315
316
317
318
319
320 | class MemoryCall(ToolCall):
"""Memory operation tool call.
@pattern:
name: specialization
rationale: "Extends ToolCall with memory operation specific fields."
"""
type: ToolType = Field(default="memory", description="Tool type")
key: str = Field(..., description="Memory key")
scope: MemoryScope = Field(default="session", description="Memory scope")
value_preview: str | None = Field(default=None, description="Preview of stored value")
|
PlannedTask
Bases: BaseModel
A planned task within a phase.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for task planning and tracking."
Source code in agent_k/core/models.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348 | class PlannedTask(BaseModel):
"""A planned task within a phase.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for task planning and tracking."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
id: TaskId = Field(..., description="Unique task identifier")
name: str = Field(..., description="Task display name")
description: str = Field(..., description="Task description")
agent: str = Field(..., description="Agent responsible for task")
tools_required: list[ToolType] = Field(default_factory=list, description="Required tool types")
estimated_duration_ms: int = Field(default=30000, description="Estimated duration in ms")
actual_duration_ms: int | None = Field(default=None, description="Actual duration in ms")
priority: TaskPriority = Field(default="medium", description="Task priority")
dependencies: list[TaskId] = Field(default_factory=list, description="Dependent task ids")
status: TaskStatus = Field(default="pending", description="Task status")
progress: float = Field(default=0.0, ge=0.0, le=100.0, description="Completion percentage")
result: Any | None = Field(default=None, description="Task result payload")
error: str | None = Field(default=None, description="Task error message")
tool_calls: list[ToolCall] = Field(default_factory=list, description="Tool calls executed")
started_at: datetime | None = Field(default=None, description="Task start time")
completed_at: datetime | None = Field(default=None, description="Task completion time")
|
PhasePlan
Bases: BaseModel
Plan for a mission phase.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for phase-level planning."
Source code in agent_k/core/models.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371 | class PhasePlan(BaseModel):
"""Plan for a mission phase.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for phase-level planning."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
phase: MissionPhase = Field(..., description="Phase identifier")
display_name: str = Field(..., description="Human-readable phase name")
objectives: list[str] = Field(default_factory=list, description="Phase objectives")
success_criteria: list[str] = Field(default_factory=list, description="Success criteria")
tasks: list[PlannedTask] = Field(default_factory=list, description="Tasks in phase")
timeout_ms: int = Field(default=300000, description="Phase timeout in ms")
fallback_strategy: str | None = Field(default=None, description="Fallback strategy")
status: TaskStatus = Field(default="pending", description="Phase status")
progress: float = Field(default=0.0, ge=0.0, le=100.0, description="Phase progress")
started_at: datetime | None = Field(default=None, description="Phase start time")
completed_at: datetime | None = Field(default=None, description="Phase completion time")
|
MissionPlan
Bases: BaseModel
Complete mission plan with all phases.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for complete mission planning."
Source code in agent_k/core/models.py
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388 | class MissionPlan(BaseModel):
"""Complete mission plan with all phases.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for complete mission planning."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
mission_id: MissionId = Field(..., description="Unique mission identifier")
competition_id: CompetitionId | None = Field(default=None, description="Competition id")
phases: list[PhasePlan] = Field(default_factory=list, description="Phase plans")
total_estimated_duration_ms: int = Field(default=0, description="Total estimated duration in ms")
checkpoints: list[str] = Field(default_factory=list, description="Checkpoint identifiers")
|
GenerationMetrics
Bases: BaseModel
Metrics for a single evolution generation.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for evolution generation metrics."
Source code in agent_k/core/models.py
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412 | class GenerationMetrics(BaseModel):
"""Metrics for a single evolution generation.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for evolution generation metrics."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
generation: int = Field(..., ge=0, description="Generation index")
best_fitness: FitnessScore = Field(..., description="Best fitness score")
mean_fitness: FitnessScore = Field(..., description="Mean fitness score")
worst_fitness: FitnessScore = Field(..., description="Worst fitness score")
population_size: int = Field(..., ge=1, description="Population size")
mutations: dict[str, int] = Field(
default_factory=lambda: {"point": 0, "structural": 0, "hyperparameter": 0, "crossover": 0},
description="Mutation counts by type",
)
timestamp: datetime = Field(
default_factory=lambda: datetime.now(UTC), description="Timestamp for generation metrics"
)
|
LeaderboardSubmission
Bases: BaseModel
Record of a submission to the competition leaderboard.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for leaderboard submission records."
Source code in agent_k/core/models.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432 | class LeaderboardSubmission(BaseModel):
"""Record of a submission to the competition leaderboard.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for leaderboard submission records."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
submission_id: str = Field(..., description="Submission identifier")
generation: int = Field(..., description="Generation index")
cv_score: FitnessScore = Field(..., description="Cross-validation score")
public_score: FitnessScore | None = Field(default=None, description="Public leaderboard score")
rank: int | None = Field(default=None, description="Leaderboard rank")
total_teams: int | None = Field(default=None, description="Total teams on leaderboard")
percentile: float | None = Field(default=None, description="Leaderboard percentile")
submitted_at: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Submission timestamp")
|
EvolutionState
Bases: BaseModel
State of the evolution process.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for evolution state tracking."
Source code in agent_k/core/models.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459 | class EvolutionState(BaseModel):
"""State of the evolution process.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for evolution state tracking."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
current_generation: int = Field(default=0, description="Current generation")
max_generations: int = Field(default=100, description="Maximum generations")
population_size: int = Field(default=50, description="Population size")
improvement_count: int = Field(default=0, ge=0, description="Number of fitness improvements recorded")
min_improvements_required: int = Field(
default=0, ge=0, description="Minimum improvements required before submission"
)
best_solution: dict[str, Any] | None = Field(default=None, description="Best solution payload")
generation_history: list[GenerationMetrics] = Field(default_factory=list, description="History of generations")
failure_summary: dict[str, int] = Field(default_factory=dict, description="Failure counts by category")
convergence_detected: bool = Field(default=False, description="Whether convergence detected")
convergence_reason: str | None = Field(default=None, description="Convergence reason")
leaderboard_submissions: list[LeaderboardSubmission] = Field(
default_factory=list, description="Leaderboard submissions"
)
|
MemoryEntry
Bases: BaseModel
Entry in the memory store.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for memory store entries."
Source code in agent_k/core/models.py
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479 | class MemoryEntry(BaseModel):
"""Entry in the memory store.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for memory store entries."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
key: str = Field(..., description="Memory key")
scope: MemoryScope = Field(default="session", description="Memory scope")
category: str = Field(..., description="Category for grouping")
value_preview: str = Field(..., max_length=200, description="Preview of stored value")
created_at: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Creation timestamp")
accessed_at: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Last accessed timestamp")
access_count: int = Field(default=1, description="Access count")
size_bytes: int = Field(default=0, description="Approximate size in bytes")
|
Checkpoint
Bases: BaseModel
Mission state checkpoint.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for state checkpoint records."
Source code in agent_k/core/models.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495 | class Checkpoint(BaseModel):
"""Mission state checkpoint.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for state checkpoint records."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
name: str = Field(..., description="Checkpoint name")
phase: MissionPhase = Field(..., description="Phase when checkpoint was created")
timestamp: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Checkpoint timestamp")
state_snapshot: str = Field(..., description="Serialized state")
|
MemoryState
Bases: BaseModel
Overall memory state.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for aggregate memory state."
Source code in agent_k/core/models.py
498
499
500
501
502
503
504
505
506
507
508
509
510 | class MemoryState(BaseModel):
"""Overall memory state.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for aggregate memory state."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
entries: list[MemoryEntry] = Field(default_factory=list, description="Memory entries")
checkpoints: list[Checkpoint] = Field(default_factory=list, description="State checkpoints")
total_size_bytes: int = Field(default=0, description="Total size in bytes")
|
ErrorEvent
Bases: BaseModel
Record of an error event.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for error event records."
Source code in agent_k/core/models.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534 | class ErrorEvent(BaseModel):
"""Record of an error event.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for error event records."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
id: str = Field(..., description="Unique error identifier")
timestamp: datetime = Field(default_factory=lambda: datetime.now(UTC), description="Error timestamp")
category: ErrorCategory = Field(..., description="Error category")
error_type: str = Field(..., description="Exception class name")
message: str = Field(..., description="Error message")
context: str = Field(default="", description="Error context")
task_id: TaskId | None = Field(default=None, description="Related task id")
phase: MissionPhase | None = Field(default=None, description="Related phase")
recovery_strategy: RecoveryStrategy = Field(default="retry", description="Recovery strategy")
recovery_attempts: int = Field(default=0, description="Recovery attempts")
resolved: bool = Field(default=False, description="Whether resolved")
resolution: str | None = Field(default=None, description="Resolution details")
|
LeaderboardAnalysis
Bases: BaseModel
Analysis of competition leaderboard.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for leaderboard analysis results."
Source code in agent_k/core/models.py
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554 | class LeaderboardAnalysis(BaseModel):
"""Analysis of competition leaderboard.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for leaderboard analysis results."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
top_score: float = Field(..., description="Top leaderboard score")
median_score: float = Field(..., description="Median leaderboard score")
target_score: float = Field(..., description="Target score for goal percentile")
target_percentile: float = Field(..., description="Target percentile")
total_teams: int = Field(..., description="Total teams on leaderboard")
score_distribution: list[dict[str, float]] = Field(default_factory=list, description="Score distribution")
common_approaches: list[str] = Field(default_factory=list, description="Common approaches")
improvement_opportunities: list[str] = Field(default_factory=list, description="Improvement opportunities")
|
ResearchFindings
Bases: BaseModel
Complete research findings for a competition.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for research findings aggregate."
Source code in agent_k/core/models.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571 | class ResearchFindings(BaseModel):
"""Complete research findings for a competition.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for research findings aggregate."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
leaderboard_analysis: LeaderboardAnalysis | None = Field(default=None, description="Leaderboard analysis")
papers: list[dict[str, Any]] = Field(default_factory=list, description="Paper findings")
approaches: list[dict[str, Any]] = Field(default_factory=list, description="Approach findings")
eda_results: dict[str, Any] | None = Field(default=None, description="EDA results")
strategy_recommendations: list[str] = Field(default_factory=list, description="Strategy recommendations")
|
MissionCriteria
Bases: BaseModel
Criteria constraining mission execution.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for mission execution constraints."
Source code in agent_k/core/models.py
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612 | class MissionCriteria(BaseModel):
"""Criteria constraining mission execution.
@pattern:
name: immutable-entity
rationale: "Frozen Pydantic model for mission execution constraints."
"""
model_config = ConfigDict(frozen=True)
schema_version: str = Field(default=SCHEMA_VERSION, description="Schema version")
target_competition_types: frozenset[CompetitionType] = Field(
default=frozenset({CompetitionType.FEATURED, CompetitionType.RESEARCH}), description="Target competition types"
)
min_prize_pool: int | None = Field(default=None, ge=0, description="Minimum prize pool")
max_team_size: int | None = Field(default=None, ge=1, description="Maximum team size")
min_days_remaining: int = Field(default=7, ge=1, description="Minimum days remaining")
target_domains: frozenset[str] = Field(default_factory=frozenset, description="Target domains")
exclude_domains: frozenset[str] = Field(default_factory=frozenset, description="Excluded domains")
max_evolution_rounds: int = Field(
default=100, ge=1, le=MAX_MISSION_EVOLUTION_ROUNDS, description="Max evolution rounds"
)
min_improvements_required: int = Field(
default=0, ge=0, description="Minimum number of fitness improvements required before submission"
)
target_leaderboard_percentile: float = Field(
default=0.10, ge=0.0, le=1.0, description="Target top N percentile on leaderboard"
)
evolution_models: tuple[str, ...] = Field(
default_factory=tuple, description="Ordered model specs to rotate during evolution"
)
use_openevolve: bool = Field(default=False, description="Use OpenEvolve for evolution mutations")
@model_validator(mode="after")
def validate_domains_disjoint(self) -> Self:
"""Ensure target and exclude domains don't overlap."""
overlap = self.target_domains & self.exclude_domains
if overlap:
raise ValueError(f"Domains cannot be both targeted and excluded: {overlap}")
return self
|
validate_domains_disjoint
validate_domains_disjoint() -> Self
Ensure target and exclude domains don't overlap.
Source code in agent_k/core/models.py
606
607
608
609
610
611
612 | @model_validator(mode="after")
def validate_domains_disjoint(self) -> Self:
"""Ensure target and exclude domains don't overlap."""
overlap = self.target_domains & self.exclude_domains
if overlap:
raise ValueError(f"Domains cannot be both targeted and excluded: {overlap}")
return self
|